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Abstract

In this paper, the design of mechanical band-pass filters to be used in energy scavengers is studied. For such filters an

ensemble of cantilever beams is proposed where at the tip of each beam a mass, known as the proof mass, is mounted. It is

shown that such an ensemble can be made into a band-pass filter when dimensions of the beams and masses of the proof

masses are chosen appropriately. A systematic procedure for designing mechanical band-pass filters is given. It is shown

that the maximal frequency band of the band-pass filter is limited and cannot be chosen arbitrarily large: The frequency

band is independent of dimensions of the beams and masses of the proof masses.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Harvesting energy from the environment has been a desire and practice of the man. Throughout centuries,
many devices and tools have been designed and made to generate power from natural resources, such as solar
radiation, wind and air flow, tidal waves, temperature gradients in oceans, pressure variations, water flow,
fossil and nuclear fuels, etc.; see, e.g., Refs. [1–5].

There is yet the concept of energy scavenging from the ambient which is receiving attention recently. Energy
scavenging is commonly understood as the conversion of low-level ambient energy, which is usually neglected,
into usable but small amount of energy; see, e.g., Refs. [6–13]. Some examples are: (1) kinetic energy of a
human arm can be used to wind a wrist watch; (2) piezoelectric shoe inserts can convert energy of walking into
electricity; (3) vibration in buildings, bridges, cars, trains, aircraft, ships, manufacturing tools, etc., can be
converted into electricity to power micro-electronic devices. A device that scavenges energy efficiently from the
environment is called an energy scavenger. Integration of energy scavengers and devices leads to energy self-
sufficient devices where there is no need to replace their depleted power supplies. Examples of such devices are
energy self-sufficient sensors to be used in large wireless sensor networks or inside the car tires.

In order to convert the ambient kinetic or vibrational energy into electricity, piezoelectric films are
commonly incorporated in energy scavengers; see, e.g., Ref. [13] and the references therein. A typical energy
scavenger consists of a cantilever beam on which a piezoelectric film and a mass are mounted; see Fig. 1. This
device will be referred to as either the energy scavenger or the beam–mass system. When the scavenger is
ee front matter r 2005 Elsevier Ltd. All rights reserved.

v.2005.08.018

0 642 3248; fax: +1 510 642 1341.

ess: shahruz@cal.berkeley.edu.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2005.08.018
mailto:shahruz@cal.berkeley.edu


ARTICLE IN PRESS

Proof Mass

Piezoelectric Film

Ambient Vibration

Cantilever Beam

Fig. 1. A typical energy scavenger consists of a cantilever beam on which a piezoelectric film and a mass, known as the proof mass, are

mounted.
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Fig. 2. The power spectral density of the signal generated by a vibration source (thin line) and the Bode magnitude plot of a mechanical

band-pass filter (thick line). An energy scavenger is less efficient if its resonant frequency is not close to the peak-power frequency of the

vibration source: The scavenger would not resonate.
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mounted on a vibration source, say a panel, the cantilever beam would vibrate. The vibration of the beam is
converted into electricity by the piezoelectric film. The mass on the cantilever beam is known as the proof
mass. It is used to change the resonant (fundamental) frequency of the scavenger. Recall that the resonant
frequency of a linear dynamical system is defined as the frequency at which the Bode magnitude plot
corresponding to the system has the largest magnitude.

A vibration source generates a signal which is a function of time. To this function there corresponds a power
spectral density which is a function of frequency. The frequency at which the power spectral density is the
largest is called the peak-power frequency. When the resonant frequency of a scavenger matches the peak-
power frequency of the vibration source to which it is attached, harvesting of energy is the most efficient. The
scavenging efficiency is very low otherwise; for instance, in a situation such as that depicted in Fig. 2.

It is certainly possible to manufacture an energy scavenger the resonant frequency of which matches the
peak-power frequency of a certain vibration source. It is, however, not feasible to manufacture as many energy
scavengers as there are vibration sources with different peak-power frequencies. The range of peak-power
frequencies of vibration sources can be determined via measurement; for instance, it could be between 100 and
200Hz. Therefore, in order to scavenge energy efficiently, an energy scavenger should have sufficient
bandwidth in the range of peak-power frequencies of vibrations sources. A device with such a property is
nothing but a mechanical band-pass filter with a Bode magnitude plot such as that shown in Fig. 3.

In this paper, the goal is to design energy scavengers that can efficiently harvest energy from a variety of
vibration sources with different peak-power frequencies. In other words, the goal is to design mechanical
band-pass filters. The organization of the paper is as follows. In Section 2, a mathematical model is obtained
to describe the transversal vibration of a beam–mass system. In Section 3, an ensemble of beam–mass systems
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Fig. 4. A schematic of a beam with a proof mass at its tip. The vibration source exerts the acceleration €uð�Þ. The transversal displacement

of the beam at an x 2 ½0; l� and a tX0 is denoted by yðx; tÞ.
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Fig. 3. The power spectral density of the signal generated by a vibration source (thin line) and the Bode magnitude plot of a mechanical

band-pass filter (thick line). A band-pass filter can scavenge energy from vibration sources the peak-power frequencies of which are within

the frequency band of the filter.
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is considered. It is shown that such an ensemble can be made into a band-pass filter when dimensions of the
beams and masses of the proof masses are chosen appropriately. A systematic procedure for designing
mechanical band-pass filters is given. It is shown that the frequency band of the band-pass filter is limited and
cannot be chosen arbitrarily large: The maximal frequency band is independent of dimensions of the beams
and masses of the proof masses. Examples are presented throughout the paper.

2. A mathematical model of vibrating beam-mass systems

In Fig. 4, consider a schematic of the beam–mass system shown in Fig. 1. The length, width, and thickness
of the beam are denoted by l, w, and h, respectively. The mass density and the modulus of elasticity of the
beam are denoted by r and E, respectively. The proof mass at the tip of the beam is assumed to be a point
mass of mass M. The vibration source, on which the cantilever beam is mounted, exerts the acceleration €uð�Þ.
Due to this external input, the beam vibrates transversally. The transversal displacement of the beam at an
x 2 ½0; l� and a tX0 is denoted by yðx; tÞ 2 R.

With this setup, a mathematical model describing the dynamics of the beam–mass system is sought. It is
possible to derive a linear partial differential equation to describe the evolution of the beam displacement,
yðx; tÞ, for all x 2 ½0; l� and tX0. Instead of a partial differential equation, a simpler and mathematically
tractable model is preferred. One such model is the generalized single-degree-of-freedom (sdof) system
corresponding to the beam–mass system; see, e.g., Ref. [14, pp. 140–145].

To develop the generalized sdof system, the transversal displacement of the beam is written as

yðx; tÞ ¼ fðxÞqðtÞ, (1)
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for all x 2 ½0; l� and tX0, where the real- and scalar-valued function x 7! fðxÞ is a known trial (shape)
function and the real- and scalar-valued function t 7! qðtÞ is an unknown (generalized coordinate) function.

The trial function is chosen to be the first mode of the free transversal vibration of the beam–mass system in
Fig. 4, given by (see, Ref. [15, pp. 186–188]):

fðxÞ ¼ sin lðaÞ
x

l

� �� �
� sinh lðaÞ

x

l

� �� �

�
sinh lðaÞ þ sinh lðaÞ
cos lðaÞ þ cosh lðaÞ

cos lðaÞ
x

l

� �� �
� cosh lðaÞ

x

l

� �� �h i
, ð2Þ

for all x 2 ½0; l�, where l depends on a :¼M=rwhl. Using the first two terms in the series expansions of
sinðlðaÞðx=lÞÞ, sinhðlðaÞðx=lÞÞ, cosðlðaÞðx=lÞÞ, and coshðlðaÞðx=lÞÞ (see, e.g., Ref. [16]) in Eq. (2), the trial
function is approximated by

fðxÞ ¼ aðaÞ
x

l

� �2
� bðaÞ

x

l

� �3
, (3)

for all x 2 ½0; l�, where

aðaÞ ¼
sin lðaÞ þ sinh lðaÞ
cos lðaÞ þ cosh lðaÞ

l2ðaÞ; bðaÞ ¼
1

3
l3ðaÞ. (4)

Using the value of a and the corresponding lðaÞ in Ref. [15, p. 188, Table 6.7(a)], aðaÞ and bðaÞ can be
computed for all aX0. It can be easily verified that for any aX0, the functions in Eqs. (2) and (3) are very close
to each other over the interval ½0; l� by plotting their graphs. In the following, for the sake of brevity, the
dependence of l, a, b, x 7! fðxÞ, and other functions on a is not pedantically stated everywhere.

In developing the generalized sdof system, the generalized mass, the generalized flexural stiffness, and the
generalized effective load corresponding to the beam–mass system should be known; see, e.g., Ref. [14, p. 143].
Such quantities are computed in the following.

The generalized mass is

m ¼

Z l

0

rwhf2
ðxÞdxþMf2

ðlÞ. (5)

Using Eq. (3) in Eq. (5), it is concluded that

m ¼ ða� bÞ2M þ
a2

5
�

2ab

6
þ

b2

7

� �
rwhl. (6)

The generalized flexural stiffness is

k ¼

Z l

0

EI
d2fðxÞ
dx2

� �2

dx, (7)

where I ¼ wh3=12 is the second moment of area of the beam cross-section. Using Eq. (3) in Eq. (7), it follows
that

k ¼
ða2 � 3abþ 3b2

ÞEwh3

3l3
. (8)

The generalized effective load in the absence of gravity is

f eff ðtÞ ¼ �

Z l

0

rwhfðxÞdxþMfðlÞ
� �

€uðtÞ, (9)
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for all tX0. Using Eq. (3) in Eq. (9), it is concluded that

f eff ðtÞ ¼ � ða� bÞM þ
a

3
�

b

4

� �
rwhl

� �
€uðtÞ, (10)

for all tX0.
Using Eqs. (6), (8), and (10) in Eq. (8–15) in Ref. [14, p. 143], the generalized sdof system corresponding to

the beam–mass system is obtained as the following second-order ordinary differential equation:

½a1ðaÞM þ a2ðaÞrwhl� €qðtÞ þ
a3ðaÞEwh3

3l3
qðtÞ ¼ �½a4ðaÞM þ a5ðaÞrwhl� €uðtÞ,

qð0Þ ¼ 0; _qð0Þ ¼ 0, (11)

all tX0, where

a1ðaÞ :¼ ½aðaÞ � bðaÞ�2; a2ðaÞ :¼
a2ðaÞ
5
�

2aðaÞbðaÞ
6

þ
b2
ðaÞ
7

, (12a)

a3ðaÞ :¼ a2ðaÞ � 3aðaÞbðaÞ þ 3b2
ðaÞ, (12b)

a4ðaÞ :¼ aðaÞ � bðaÞ; a5ðaÞ :¼
aðaÞ
3
�

bðaÞ
4

. (12c)

Using the value of a and the corresponding lðaÞ in Ref. [15, p. 188, Table 6.7(a)], aðaÞ and bðaÞ in Eq. (4) can be
computed for all aX0. Having these quantities computed, it can be verified numerically that 0oaiðaÞo1 for
all aX0 and i ¼ 1; 2; . . . ; 5.

The unique solution of system (11) for t 7! qðtÞ can be obtained. When this solution is substituted into
Eq. (1), the transversal displacement of the undamped beam is (approximately) obtained.

In order to take into account the energy dissipation in the beam–mass system, a viscous damping term is
added to the left-hand side of Eq. (11). The result is

m €qðtÞ þ c _qðtÞ þ kqðtÞ ¼ �f €uðtÞ; qð0Þ ¼ 0; _qð0Þ ¼ 0, (13)

for all tX0, where c is a positive real number known as the damping coefficient, and

m :¼ a1ðaÞM þ a2ðaÞrwhl; k :¼
a3ðaÞEwh3

3l3
; f :¼ a4ðaÞM þ a5ðaÞrwhl. (14)

The undamped natural frequency and the damping ratio corresponding to both system (13) and the
beam–mass system are defined, respectively, as

on :¼
k

m

� �1=2

; x :¼
c

2ðmkÞ1=2
. (15a,b)

The unique solution of system (13) for t 7! qðtÞ can be obtained. When this solution is substituted into Eq. (1),
the transversal displacement of the damped beam is (approximately) obtained. Having the values of aðaÞ and
bðaÞ for all aX0, it can be easily verified that the function x 7!fðxÞ in Eq. (3) is monotonically increasing over
the interval ½0; l� for all aX0. Thus, x 7!fðxÞ attains its maximum at x ¼ l for all aX0. Therefore, for any aX0,
the absolute value of displacement of the tip of the beam, jyðl; tÞj, is the largest at every tX0.

By applying the Laplace transform to Eq. (1), it follows that

yðx; sÞ ¼ fðxÞqðsÞ, (16)

for all x 2 ½0; l�, where yðx; sÞ and qðsÞ are the Laplace transforms of yðx; �Þ and qð�Þ, respectively. A transfer
function, which relates the transversal displacement of the tip of the beam to the applied acceleration, is
defined as

gtipðsÞ :¼
yðl; sÞ

€uðsÞ
, (17)
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where €uðsÞ is the Laplace transforms of €uð�Þ. Using Eqs. (16), (3), (12c), and (13) in Eq. (17), it is concluded that

gtipðsÞ ¼
fðlÞqðsÞ
€uðsÞ

¼ �
a4f

ms2 þ csþ k
. (18)

The H1-norm of gtipðsÞ is defined as

kgtipk1 :¼ max
o2R
jgtipðjoÞj, (19)

where j ¼
ffiffiffiffiffiffiffi
�1
p

. The norm kgtipk1 corresponds to the (global) maximum of the Bode magnitude plot of the
transfer function gtipðsÞ.

It is well known that at the resonant frequency of the beam–mass system

or ¼ onð1� 2x2Þ1=2, (20)

the magnitude jgtipðjoÞj attains its maximum given by

kgtipk1 ¼
a4f

2xkð1� x2Þ1=2
, (21)

where on and x are those in Eq. (15). When 0ox51, it follows that or � on ¼ ðk=mÞ1=2 and
kgtipk1 � a4f =ð2xkÞ. Thus, by Eq. (14), it is concluded that

or ¼
a3ðaÞEwh3

3½a1ðaÞM þ a2ðaÞrwhl�l3

� �1=2

, (22a)

kgtipk1 ¼
3a4ðaÞ½a4ðaÞM þ a5ðaÞrwhl�l3

2xa3ðaÞEwh3
, (22b)

for all aX0, where a1ðaÞ; a2ðaÞ; . . . ; a5ðaÞ are given in Eq. (12).
In the design of mechanical band-pass filters, the resonant frequency or and the norm kgtipk1 will be used.

An example is given in the following to illustrate the computation of these two quantities.

Example 2.1. Let the beam in Fig. 4 be made out of silver with the following material properties:

r ¼ 10 500 kg=m3; E ¼ 7:8� 1010 N=m2; x ¼ 0:01. (23)

Let the beam dimensions and the proof mass be

l ¼ 0:04m; w ¼ 0:005m; h ¼ 0:001m, (24a)

M ¼ 0:0042 kg. (24b)

With this setup, a ¼M=rwhl ¼ 2. Therefore, from Ref. [15, p. 188, Table 6.7(a)], l ¼ 1:076. Using Eqs. (4),
(12), (14), (15b), and (18), it follows that

gtipðsÞ ¼ �
0:0302

0:02843s2 þ 0:324sþ 9229
. (25)

The Bode magnitude plot of the transfer function in Eq. (25) is shown in Fig. 5.
Using Eqs. (4), (12), and (22), it is concluded that

or ¼ 569:74 rad=s ¼ 90:68Hz; kgtipk1 ¼ 1:6364� 10�4 s2. (26)

Note that the peak of the Bode magnitude plot in Fig. 5 is equal to 20 log10 kgtipk1.

3. A mechanical band-pass filter

The goal of this section is to explore the possibility of designing a mechanical band-pass filter from
an ensemble of beam–mass systems, such as that shown in Fig. 6. Conceivably, if dimensions of the beams
and masses of the proof masses are chosen appropriately, then the device in Fig. 6 can function as a
band-pass filter.
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Fig. 5. The Bode magnitude plot of the transfer function corresponding to the beam–mass system in Example 2.1.
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Recall that Eq. (22) shows the dependence of the resonant frequency or and the norm kgtipk1 on the beam
dimensions and the proof mass. Using this equation, it is examined whether it is possible to choose beams with
different dimensions and different proof masses such that: (i) resonant frequencies or of the beam–mass
systems are different from each other; (ii) norms kgtipk1 corresponding to all beam–mass systems assume a
same constant value, say g�40. If the device in Fig. 7 satisfies conditions (i) and (ii), then it functions as a
band-pass filter. In this case, the Bode magnitude plots of the transfer functions corresponding to the
beam–mass systems would look like those in Fig. 7. An important question that arises is: What is the maximal
achievable frequency band ðomin;omaxÞ over which kgtipk1 corresponding to each beam–mass system is equal
to g�? As it will be shown in the following, this interval is limited and cannot be chosen arbitrarily large.

In Eq. (22b), the norm kgtipk1 is set equal to g�40. The result is

g� ¼
3a4ðaÞ½a4ðaÞM þ a5ðaÞrwhl�l3

2xa3ðaÞEwh3
, (27)

for all aX0. Dimensions of the beams and masses of the proof masses should satisfy the equality constraint in
Eq. (27), should the transfer functions gtipðsÞ corresponding to the beam–mass systems have their H1-norms
equal to g�. Using the relation

M ¼ arwhl, (28)
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Fig. 7. The Bode magnitude plots of the transfer functions corresponding to the beam–mass systems of the device in Figure 6 when the

device functions as a band-pass filter. The frequency band of the filter is denoted by ðomin;omaxÞ.

Table 1

Values of two functions

a F ðaÞ in Eq. (31) GðaÞ in Eq. (34)

0.00 0.8758 1.0949

0.03 0.8616 1.0694

0.05 0.8533 1.0540

0.10 0.8355 1.0212

0.15 0.8214 0.9936

0.20 0.8099 0.9698

0.25 0.8004 0.9489

0.35 0.7858 0.9134

0.50 0.7708 0.8705

0.75 0.7553 0.8170

1.00 0.7459 0.7768

1.50 0.7349 0.7187

2.00 0.7288 0.6774
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in Eq. (27), it follows that

l4 ¼
2a3ðaÞExg�

3a4ðaÞ½aa4ðaÞ þ a5ðaÞ�r

� �
h2, (29)

for all aX0. Substituting Eqs. (28) and (29) into Eq. (22a), it is concluded that

or ¼
a4ðaÞ½aa4ðaÞ þ a5ðaÞ�
2½aa1ðaÞ þ a2ðaÞ�

� �1=2
1

xg�

� �1=2

, (30)

for all aX0.
An important conclusion is drawn from Eq. (30) as follows. Let

F ðaÞ :¼
a4ðaÞ½aa4ðaÞ þ a5ðaÞ�
2½aa1ðaÞ þ a2ðaÞ�

� �1=2

, (31)

for all aX0. The scalar-valued function a 7!F ðaÞ appears on the right-hand side of Eq. (30). This function is
evaluated by using the values of a and the corresponding lðaÞ in Ref. [15, p. 188, Table 6.7(a)] and Eqs. (4) and
(12); results are listed in Table 1. It is evident from this table that a 7!F ðaÞ is a monotonically decreasing
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function of a. Therefore, from Eq. (30), it follows that

omin :¼
0:7071

ðxg�Þ1=2
¼

a2
4ð1Þ

2a1ð1Þ

� �1=2
1

xg�

� �1=2

oorp
a4ð0Þa5ð0Þ

2a2ð0Þ

� �1=2
1

xg�

� �1=2

¼
0:8758

ðxg�Þ1=2
¼:omax. (32)

From Eq. (12), it is noted that a2
4ðaÞ=a1ðaÞ ¼ 1 for all aX0. This fact establishes the greatest lower bound on or

in inequality (32). It is concluded from inequality (32) that in the interval ðomin;omax�, norms kgtipk1
corresponding to all beam–mass systems are equal to g�. Note that this interval is maximal, is independent of
dimensions of the beams and masses of the proof masses, and is inversely proportional to x and g�.

A major limit of performance of the device in Fig. 6 is apparent from inequality (32). The device does
function as a band-pass filter, however, the frequency band ðomin;omax�, over which the peaks of the Bode
magnitude plots of the transfer functions gtipðsÞ corresponding to all beam–mass systems remain constant, is
limited. This band cannot be widened by changing dimensions of the beams and masses of the proof masses.

Although the device in Fig. 6 as a band-pass filter has limited frequency band, it is necessary to have a
systematic procedure to determine dimensions of the beams and masses of the proof masses of such a device. A
procedure is given in the following.

Procedure 3.1. Take the following steps to obtain dimensions l, w, and h of the beams and masses of the proof
masses M that make the device in Fig. 6 function as a band-pass filter.

Step 1: Choose a g�40. Knowing the damping ratio 0ox51, obtain the frequency band ðomin;omax� from
inequality (32).

Step 2: Use the values of a and the corresponding lðaÞ in Ref. [15, p. 188, Table 6.7(a)] and Eqs. (4) and (12)
to compute or from Eq. (30).

Choose a same thickness h for all beams and compute lengths l via Eq. (29), which is written as

l ¼
2a3ðaÞ

3a4ðaÞ½aa4ðaÞ þ a5ðaÞ�

� �1=4
Exg�

r

� �1=4

h1=2, (33)

for several values of aX0.
Step 3: Choose a same width w for all beams. Use the chosen w together with h and l from Step 2 to compute

masses of the proof masses M from Eq. (28).

A few remarks regarding Procedure 3.1 are in order.

Remarks. (1) By Procedure 3.1, the cantilever beams of the device in Fig. 6 have a same thickness, a same
width, but different lengths. It is possible to modify Procedure 3.1 so that the beams would have a same length,
a same width, but different thicknesses. Such a procedure results in beams the thicknesses of which differ only
slightly from each other. This design is not recommended since beams with slightly different thicknesses are
more difficult to fabricate than beams with distinctly different lengths.

(2) Let

GðaÞ :¼
2a3ðaÞ

3a4ðaÞ½aa4ðaÞ þ a5ðaÞ�

� �1=4

, (34)

for all aX0. The scalar-valued function a 7!GðaÞ appears on the right-hand side of Eq. (33). This function is
evaluated by using the values of a and the corresponding lðaÞ in Ref. [15, p. 188, Table 6.7(a)] and Eqs. (4) and
(12); results are listed in Table 1. It is evident from this table that a 7!GðaÞ is a monotonically decreasing
function of a; hence, so is l.

(3) It is possible to compute dimensions of the beams and masses of the proof masses for many values of
aX0 by Procedure 3.1. Such computations, however, are recommended for a 2 ½0; 2� to avoid proof masses
much heavier than the beams. At a ¼ 2, it follows from Eq. (30) that or ¼ 0:7288=ðxg�Þ1=2, which is sufficiently
close to omin.

Next, an example is given to illustrate the application of Procedure 3.1 in designing a mechanical band-pass
filter.
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Table 2

Dimensions of beams and values of proof masses

Beam a Frequency or rad/s (Hz) l (cm) w (mm) h (mm) M (g)

1 2.00 325.93 (51.87) 3.74 4 0.5 1.5706

2 1.50 328.67 (52.31) 3.97 4 0.5 1.2497

3 1.00 333.56 (53.09) 4.29 4 0.5 0.9005

4 0.75 337.78 (53.76) 4.51 4 0.5 0.7103

5 0.50 344.69 (54.86) 4.80 4 0.5 0.5045

6 0.35 351.41 (55.93) 5.04 4 0.5 0.3706

7 0.25 357.96 (56.97) 5.24 4 0.5 0.2750

8 0.20 362.19 (57.64) 5.35 4 0.5 0.2248

9 0.15 367.32 (58.46) 5.48 4 0.5 0.1728

10 0.10 373.66 (59.47) 5.64 4 0.5 0.1184

11 0.05 381.60 (60.73) 5.82 4 0.5 0.0611

12 0.03 385.30 (61.32) 5.90 4 0.5 0.0372

13 0.00 391.65 (62.33) 6.04 4 0.5 0
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Example 3.2. Let the device in Fig. 6 be made out of silver with the properties given in Eqs. (23). In order to
determine dimensions of the beams and masses of the proof masses that make this device into a band-pass
filter, Procedure 3.1 is used.

Let

g� ¼ 5� 10�4 s2. (35)

From inequality (32), it follows that

ðomin;omax� ¼ ð316:28; 391:65� rad=s ¼ ð50:33; 62:33�Hz. (36)

By Step 2 of Procedure 3.1, resonant frequencies or are computed from Eq. (30) for several values of aX0;
they are listed in Table 2. The same thickness h ¼ 0:0005m is chosen for all beams. Then, lengths of the beams
are computed via Eq. (33). Results are listed in Table 2 as h and l.

The same width w ¼ 0:004m is chosen for all beams. By Step 3 of Procedure 3.1, masses of the proof masses
are computed from Eq. (28); they are tabulated as M in Table 2.

The designed band-pass filter has 13 beam–mass systems. The Bode magnitude plots of the transfer
functions gtipðsÞ corresponding to these beam–mass systems are shown in Fig. 8. It is evident that all plots have
a same peak in the interval ½325:93; 391:65� rad=s.
4. Conclusions

In this paper, the design of mechanical band-pass filters was studied. Such filters can be used in energy
scavengers to convert energy from vibration sources into electricity.

The band-pass filter proposed in this paper is an ensemble of cantilever beams where at the tip of each beam
a mass, known as the proof mass, is mounted. A beam with a proof mass at its tip is called the beam–mass
system. In order to study the frequency response of such an ensemble, a simple mathematical model was
derived to describe the transversal vibration of a beam–mass system. The model is the generalized single-
degree-of-freedom (sdof) system corresponding to the beam–mass system. For this model a transfer function
was obtained that relates the transversal displacement of the tip of the beam to the acceleration applied by a
vibration source. The resonant (fundamental) frequency of this transfer function and its H1-norm were
obtained in terms of the beam dimensions and the proof mass.

Using the results obtained for one beam–mass system, it was shown that an ensemble of beam–mass systems
can be made into a band-pass filter when dimensions of the beams and masses of the proof masses are chosen
appropriately. A systematic procedure for designing mechanical band-pass filters was given. Moreover, it was
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Fig. 8. The Bode magnitude plots of the transfer functions corresponding to the beam–mass systems in Example 3.2. All plots have a same

peak in the interval ðomin;omax�.
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shown that the maximal frequency band of the band-pass filter is limited and independent of dimensions of the
beams and masses of the proof masses.

Work to design versatile mechanical band-pass filters with reasonable frequency bands over large frequency
intervals is in progress. Such filters can be used on a variety of vibration sources with different peak-power
frequencies. Results of the ongoing work will be reported in the near future.
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